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Yen-chu Wang 
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Abstract. A general treatment of generalised quantal harmonic oscillators with time- 
dependent mass, frequency, damping rate and driving forces has been presented by using 
boson operators to find the quadratic invariant. Phase factor, eigenstates and state vectors 
are given. Examples of special cases are also given. 

1. Introduction 

Consider the Hamiltonian 
H( t )  = fF( t ) p 2 / m  +iG( t)mw’x’+iJ( t)(xp + p x )  + K (  t )x  + L( t ) p .  (1.1) 
H describes a time-dependent harmonic oscillator (THO) with time-dependent mass, 
frequency and, to a certain extent, ‘damping’ rate denoted by J (  t ) .  The last two terms 
describe the time-dependent driving term. 

In this paper we emphasise the importance of finding boson operators B ( t )  and 
B+(  t )  based on ( l . l ) ,  which is central to our generalised harmonic oscillator problem. 
Knowing these operators, we shall find the (Hermitian) invariant I = h ( B + B  + f) for 
H. Our treatment of the general problem is completely based on the operator formalism 
which gives directly the solution of the Schrodinger equation corresponding to the 
Hamiltonian (1.1); it should be mentioned, however, that Lewis (1968) was the first 
to discuss the Dirac method for finding the eigenstates and eigenvalues for a special 
case of (1.1). 

In the Schrodinger picture operators x and p are independent of time. From a 
physical consideration, positive mass and frequency are assumed, and therefore F (  t )  
and G ( t )  are assumed to be positive and real-valued at all time; no such restriction 
is assuned for J (  t ) ,  K ( I )  and L( t )  so long as they are real-valued. A compact alternate 
expression for H is given by 

where A(t)  is assumed to be positive definite for all t .  For the Dirac methods as 
applied to (1.1) or (1.2) see Abdalla and Colegrave (1985) and Abdalla (1986). For 
brevity the time-dependence notations will be omitted, unless clarity requires otherwise. 

2. Boson operators and invariant 

We shall define the following operators: 
B = (2h)-’”(sx+ipp+ h p )  B + =  (2h)-’12(s*x-ipp+ h p * )  (2.1) 

so that the three unknown functions of the time (s, p and p )  can be determined from 
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an invariant I of H where 

I = h ( B + B + ; )  ( 2 . 2 a )  

( 2 . 2 6 )  . ar 1 
I =-+- [ I ,  HI = o  

a t  ih 

and the canonical relation 

[B, B f ]  = 1. ( 2 . 2 c )  

After considerable algebra, we obtain 

s = p- ’  + i p (JP - P ) ( 2 . 3 )  

where p satisfies the generalised Pinney equation (Pinney 1950, Lewis 1968, Lewis and 
Riesenfeld 1969) 

i ; + p - ’ / i p [ n ’ - p - ’ ( p  J ) ] p  = p - * p - 3  ( 2 . 4 )  
and 

l =  h - ’ [ i ( p ~ + p p ~ ) - - ( p - ’ L + p R p ~ ) ] .  ( 2 . 5 b )  

The invariant becomes 

I = f { ~ - ~ x ’ + [ p ( J p  - p ) x  +ppI2}+ h[Re(ps*)x+ Im(p)pp] + t h 2 p * p .  (2.6) 
In the above equations the following parameters are defined: 

where p is the time-dependent mass and is the shifted frequency due to damping, 
which is different from R( t )  given by Abdalla and Colegrave (1985) and Abdalla 
(1986). We assume FGw’ > J’so that only the undercritical damping will be considered. 

3. Solution of Schrodinger equation 

3.1. Eigenstates of invariant 

Lewis and Riesenfeld (1969) showed that the eigenstates of an invariant are solutions 
of the Schrodinger equation apart from non-global time-dependent phase factors which 
are significant in the superposition of these states. Since I is invariant, use of the 
number representation is convenient. 

The eigenstates in coordinate representation are 

U,, ( x )  = (x I n )  B+l n )  = ( n  + 1)”’In + 1). (3.1) 
When standard procudure is used we obtain 

( 3 . 2 ~ )  

( 3 . 2 6 )  A,, = [2“n !( h ~ ) ” ~ p ] - ” ~  

where ( 3 . 2 )  is a generalisation of Lewis and Riesenfeld’s (1969) results. 
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3.2. Phase factors and time-varying energy 

Lewis and Riesenfeld (1969)  showed that it is not I n )  but I n, a,( t ) )  = exp(ia,) I n )  that 
satisfy the time-dependent Schrodinger equation where a ,  is the relative phase to be 
calculated, In the x representation the eigenvectors and wavefunction are, respectively, 

4,,(x, t )  = exp(ia,)u,(x) $(x, t )  = c C"4,(X, t )  ( 3 . 3 )  
n 

when a,  satisfies 

hd., = ( n l i h d / d t -  H l n ) .  ( 3 . 4 )  

Since I n )  are the eigenstates of I and of the number operator B f B ,  the diagonal matrix 
elements ( n  I H I n )  can be evaluated as 

s , ( t )  = ( n  I HI n ) =  ( h / 2 p ) ( n  + 2 - ' ) [ p - 2 + p 2 p 2 + ( ~ ~ p ) 2 ] + ( h 2 / 2 ) F , ( t )  - hF2(r)  

Fl(t) = P(%PJ2+ P-'(P*.PPr+ P - ' P I ) '  

F z ( t )  =PSAK -pcLJL)+(pLpPr+p-'Pi)L 

( 3 . 5 )  

where pr = Re p and pi = Im p. Notice that when K = L = 0 or ,f3 = 0 ( 3 . 5 )  reduces to 
that of Lewis and Riesenfeld (1969) .  

To evaluate ( n  I d / a t  1 n )  we follow Lewis and Riesenfeld closely. Their equations 
( 5 3 )  and ( 5 6 )  can be used here provided their a and a +  are replaced by B and B'. 
Taking the time derivative of B+ and using their arguments about the phase choice, 
we obtain 

( n l a / a t l n ) =  ( i p / 2 ) ( n + 2 - ' ) ~  ( 3 . 6 ~ )  

where 

D = pp - p ' + / . - ' c ; p p  - p - y p .  J )p2 .  ( 3 . 6 b )  

Substituting ( 3 . 6 )  and ( 3 . 5 )  into ( 3 . 4 ) ,  we obtain 

a,  = - ( n + 2 - ' )  ~ u - ' ( t ' ) p - 2 ( f ' )  d t ' - (h /2 )  [' F,(t') dt '+[ '  F 2 ( t ' )  dt '  1' ( 3 . 7 )  

where, in obtaining the first integral, ( 2 . 4 )  has been used. For the special case where 
p = m and K = L =  F1 = F2 = 0 then ( 3 . 7 )  reduces to that obtained by Lewis and 
Riesenfeld (1969) .  

It is interesting to note that -a, may be interpreted as being proportional to energy 
E, ( t )  where 

E,  = hw, W, ( t ) = ( n + 2 - l ) ~  + h F , / 2  - F2.  

This energy, though time varying, is different from E , ( t )  in ( 3 . 5 )  for general time- 
dependent THO. For time-invariant HO, however, they coincide. To see this and other 
aspects, we set .F,,(t) = -hc i , ( t )  in (3.41, define As, = E ,  - E ,  and obtain 

As, = ( n  lihdldtl n )  = ( h / 2 p ) ( n  + 2 - ' ) [ p 2 p 2 + ( p R p ) 2 - p - 2 ] .  ( 3 . 8 )  
This implies that AE,  is a measure of the time dependence of eigenstates In).  If In) 
does not depend on time then As, = O  implying a time-invariant HO system in which 
Lp = 0 and, from (3 .8) ,  p = (pLR)-"* = constant which also satisfies ( 2 . 4 )  as it should. 
In this case E, = E,  = - f ic in = constant or a, = --E,t/h and the state vector 4,(x, t )  = 
exp(-ie,t/h)u,,(x), a well known result. 
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We prove next that In,a) satisfies the Schrodinger equation. Let I n ) =  

( 3 . 9 ~ )  

(3.9b) 

Clearly I n )  does not satisfy the Schrodinger equation. However, I n )  satisfies an equation 
analogous to (3.9) in which the energy operator is changed 

(3.10) 

exp(-ia,) I n, a,) so that ( n  1 = (n, a ,  lexp(ia, j .  Then (3.4) reduces to 

( ihalat)  1 n, a,) = H 1 n, a,) 

I n, a,) = exp(ia,) I n ) .  

iha/at+ ihalat  - hci, = i h  exp(-ia,)(a/at) exp(ia,) 

or, using ( n  1 n )  = 1 in (3.4), we have 

ih  exp(-ia,)(d/at) exp(ia,)l n)  = H 1 n ) .  (3 .11)  

When H and thus I n )  and ci, do not depend on t ,  ( 3 . 1 1 )  reduces to the well known 
stationary eigenvalue equation -ficin 1 n )  = E,  I n )  = H I n ) .  

4. Examples 

If we make the following changes: 

F = m / M ( t )  G = ( M ( t ) / m ) w 2 ( t ) / w 2  (4.1) 

then 

P = M ( t )  .n2 = W 2 (  t )  - J 2  K = @ / p  = M ( t ) / M ( t ) .  (4.2) 

The Hamiltonian ( 1 . 1 )  without the driving terms is now expressed in the conventional 
form 

(4.3) H - 1  0 - 2 p  2 /M(  t )  + i M (  t ) w 2 (  t)x’+;J( t)(xp+px) 

and the Pinney equation (2.4) can be rewritten as 

p +  K b  + [ W 2 ( t )  - ( J 2 + j +  K J ) ] p  = M - 2 (  t ) f3 .  (4.4) 

j + f i 2 ( r ) y  = y-3 (4.5) 

Letting p = M-’I2(  t)y in (4.4), we obtain 

fi2( f )  = W 2 (  f ) - ( f K  + a K 2 + j +  K J + J 2 ) .  (4.6) 

Thus the formulae, for obtaining p, of Pinney (1950), Eliezer and Gray (1976), Leach 
(1983) and Lewis (1968) apply. 

In the following examples we set J = K = L = 0, hence p = 0 and R = W (  t ) .  The 
phase angle for each is equal to the first integral in (3.7). 

4.1. Time-varying frequency only 

Setting M ( r ) =  m and ~ ( t ) = f i ( f ) / m  in (4.3), then (4.4) and (3.2) give 

H = [p’+fi2(t)x2]/2m m’i; + s1’( t)p = p - 3  

(4.7) 
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in agreement with Lewis (1968). We recover his invariant from (2.6) 

I = f ~ p - ~ x ’  + ( p p  - mpx)*] 

(see also Leach 1977, Colegrave and Abdalla 1983). 

4.2. Time-varying mass only 

Setting U (  t )  = w we have 

H = p 2 / 2 M (  t )  + i M (  t )w2x2  i + K@ + W 2 p  = M - 2 (  f ) p - 3  

which is in agreement with Leach (1983). The invariant is 

I = & P x 2 + ( p p -  M ( t ) p x ) ’ ] .  

4.3. Time-varying mass and frequency 

Setting J = 0 in (4.3) and (4.4) we have 

H = p 2 / 2 ~ (  t )  + f ~ (  t ) w 2 (  t ) x 2  i + K P  + U’( f ) p  = h’f-2( f )p- , .  

u , ( x )  and I have the same forms as those in § 4.2. 

(4.8) 

(4.9) 

(4.10) 

(4.1 1 )  

4.4. Strongly pulsating oscillator 

Let p = M (  t )  = m cos2( vt) in (4.2), then we have K = -2v tan( v t ) .  The Pinney equation 
(4.8) is given by 

rj’ -2v tan( v t )p  + w 2 p  = m - 2   COS-^ ~ t p - ~ .  (4.12) 

It can be easily shown (Eliezer and Gray 1976) that 

p = ~ e c ( v t ) / ( m A ) l / ~  (4.13a) 

A = ( w 2 +  Y ~ ) ” ~ .  (4.13 b )  

The invariant I in (4.10) becomes 

I = 4 c1 p 2  + f c 2 x 2  + fC,( xp + px ) (4.14) 

where 

C, = p2 = sec2( u t ) /  mA 

C , = p - 2 + M 2 ( f ) p 2 = ( m / A ) ( w 2  cos2(vt)+ v 2 )  

C, = -ppM( t )  = - v  tan( v t ) /A .  

(4.15 a )  

(4.1 5 b )  

( 4 . 1 5 ~ )  

When (4.15) is substituted into (4.14) I is seen to be the same as the invariant ( 5 5 )  
of Abdalla and  Colegrave (1985) except for the unimportant constant factor A and 
with Q = x cos( v t )  and P = p sec( vt). 
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5. Conclusion 

The quadratic invariant of the generalised time-dependent harmonic oscillator has 
been obtained by using boson operators without the generator formalism. A generalised 
Pinney equation and phase factor formulae have also been obtained. Eigenstates and 
state vectors are given for time-varying mass, frequency, damping rate and driving 
forces. The solutions of the Schrodinger equation so obtained provide useful alterna- 
tives to those obtained using either the normal-ordering operators method or the 
time-dependent perturbation method. We have presented the diagonal matrix element 
of the Hamiltonian. Its off -diagonal counterpart can be obtained without difficulty 
together with matrix elements of x, p ,  x2 and p 2 .  (For time-dependent mass, see Leach 
(1983).) The propagator without the Maslov correction factor for THO has been 
presented by Landovitz et al (1983). Cheng (1985) gives the propagator of THO with 
a time-dependent mass, including the Maslov correction factor. We have not discussed 
in this paper the linear invariants (Colegrave and Abdalla 1983) which are non- 
Hermitian but are useful for constructing coherent states (Malkin et al 1973). 
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